ASYMPTOTICS OF AXIALLY SYMMETRIC
FLUID FLOWS WITH A FREE BOUNDARY IN
THE CASE OF DWINDLING VISCOSITY

V. A. Batishchev UDC 532.516.2

For high Reynolds numbers asymptotic expansions are constructed of the solution of the ax -
ially symmetric wave problem on the surface of a viscous incompressible fluid of infinite
depth under the assumption that the tangential stresses on the free surface are of the order
0(1/Re). The principal terms of the asymptotic expansion are solutions of linear partial dif-
ferential equations, The obtained result is then adapted to the case in which the fluid fills a
bounded region whose boundary is a free surface. Some examples are given.

1. Formulation of the Problem

For the Navier—Stokes equations in the case of dwindling viscosity the nonlinear axially symmetric
problem is considered on wave motion of a viscous incompressible fluid of infinite depth with applied
stresses and the initial velocities field given, as well as the initial rise of the free surface:

av/98+-(v, VIV=—yp+e*Av+g; divv=0; (1.1)
v=a; {="C,(=0); v=yv=0(z=— o). .

The dynamic and kinematic conditions on the free surface I} :z = Z(r, t) are given by the following
relations:

' 500, do oo ov . .
L 9p21,2%r 2 2 2 o\ [9v ov dv v
p—2 [n,. ar —!—nz723+ nrnz(—ai-}-a—r)]-_—p*; (nr'—nZ) (a—;.+d_:)+2n’n: (5;"———0;’3)=T1; (1.2)

dv, v do

(i} 8 0

n, (F;-__T) + nz_a_z, — 1’2;
aF aF oF 0

il 9,
6t+v"6r R

The dimensionless quantities appearing in (1.1) and (1.2) are related to the dimensional ones (the
latter being distinguished by a prime) by the following formulas:

(r 2 Ut =1z 5 L), =9
7 4 v 7 ’ ’ —
(v, a) = (v,a); (P Pus T1s Ta) = 0ol 2 (Ps P T1s Ta);
2 _ l2 -
&% = ;‘\—’- = 1/Re.

In the above r', z', 6' are cylindrical coordinates; v' = (v! , V! , v}, is the velocity vector; p' is the hydro-
dynamic pressure; ¢'(r, z, t) is the rise of the free surface a% the instant t; F(r, 2z, t) = 0 is the equation
of the free surface Ij in an implicit form;n = (n,, n 2? 0) is the normal unit vector to T; g is the gravita-
tional acceleration; p, is the fluid density; ! andy are units of length and of time, respectively; v is the
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kinematic viscosity coefficient; Re is the Reynolds number. It is assumed that the tangential stresses
Ty(r, t) and Ty(r, t) on the free boundary are quantities of the order 0(c?), In view of the axial symmetry
no functions depend on the angle 9.

The problem (1.1), (1.2) in its linearized formuiation was analyzed in (1-5]. In the present article
the asymptotic behavior of its solution in the case of (1.1), {1.2) is considered for ¢ — 0, To solve the
problem the method employed in [6] is used.

2. Construction of Asymptotic Expansion

Asymptotic expansions of the solution of the problem (1.1), (1.2) are now obtained in the form

A N
vV~ Zo ekv, (1, 2, t) +§0 e"hk(—-‘g—, @, t); (2.1

The functions vy, py, ¢, are found as solutions of the wave problem on the surface of an ideal incom-~
pressible fluid of infinite depth,

s .
’5“;“0"1‘("0’ V) vy = —Vpyt+g divyy=0; v,=a (2.2)
_Qozg*(t=0); Vo == VVy=0(z = — oo); Do = Py

;74 i
Tt v =, (n s te iz = ().

The functions Vi P are found at the end of the first iteration {7]. By denoting the left-hand side
of the system (1.1) by P(V),where V = (Vr' Vz» Vg, D) it is required that the following relation be valid:

P (Vy) = 0(eN+1); (2.3)
Ny N
Vy= <h§0 ehv,, kgo ehpk).

. . . J
By setting the coefficients of 7, ¢!, ..., &N

linear systems of partial differential equations,

in (2.3) equal to zero, to determine Vi Dy one finds

vy,
L Vi, V)V = — v '—'-AV__(,;
L ‘;gzk(‘ Vi Pt M (2.4)
div v, =0;
Vi ft=0=0; Ve=yve=0(z=— 0);

vy =0, k=1, 2,..., N).

The functions hy, 4y are concentrated in the neighborhood of the free boundary Ty, and compensate
the deficiencies in the dynamic conditions (1.2) for tangential stresses. The free boundary I'Y for the ideal
fluid for t > 0 is a surface consisting of those fluid particles which were found on it at t = 0, To construct
the functions hy, qi the traveling local coordinates (0, @) are introduced [6]. Let r = R(p y 0,2 =Z(p, t)
be parametric equations of the contour 1‘% in the meridional section p = p(r, z, t) this being the distance of
the point (r, z) to I'y; ¢ = ¢(r, 2, t) is the value of the parameter which corresponds to a point on 1’2 nearest
to (r, z); then the vector X = (r, z) is related to the vector Y = (R, Z) by the formula

X=Y-Lpn,. (2.5)

In the above the distance pis measured along the inner normal to I}, andn = (g, b,) is the unit vector of the
normal to I‘z. It can be shown {8] that in a neighborhood of the boundary I‘Ot the formulas
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are valid, In the above % denotes the curvature of the contour I'?,

Equations are now determined which must be satisfied by the functions hy, qi. Leth ks hcak’ hyks
Voks Yok Vok be the components of the vectors hy, vy, respectively, in the coordinate system 0, 0,0,
Equatxon (1.1) is now rewritten using local coordinates and bearing in mind that the Lamé coefficients are
H,=1, H(p =0(1—pn), Hy =R +ayo. "Then (2.1) are substituted in the obtained equations using at the same
time (2.2) and (2.4). We expand the known coefficients into Taylor series in powers of p using for p =0
the valid relation 80/8t + vyVp = 0 and setting o = es. Setting the coefficients of e, e, ..., eN for h; suc-
cessively equal to zero one obtains a system of nonlinear homogenous equations,

oh, Ok,
T 1 (py + ot + sa (s @) = + (67 Re0 1 b (1, @) B+ eihoo + 8R! ?heo

aheo dhgq

+ (Bt + vy + sa (¢, 9)) —

+ {87 g0 4 B (8, cp)) Yt cihoy + oo + 6R —heohwo
sR —— e (Rhuo)

hy [1=0=0, By |;:==0; 0hy/ds |,_,=0,

Hence it follows that hgy = h(po = 0. One finds from the continuity equation that hpo =h,; =0. The coefficients
a(ts 90), b(t, 90), ci(t9 90), ooy 04 are given by

a (9(]) . ‘ Fi
a(t,q) = [,,t + Vovp ]p 0; b(t, ) = [—— ‘i“VOV(P]p=0; Cl(t,cp)Z[G“‘ Z‘fp

-

dR
6t 9) = 26—'pt WU

20 0=0;

oR

¢;(t, @) =6 'R~ 75 Veolo=0;

ey (t, @) = [ ‘R~ V¢0 + a,R™ lUDO]O=0'

Similarly for hy, &, one obtains systems of linear equations of the form

O, Ohy, ah

L QR e !

= - b ¢ crhgr - cohor — 2.7

6271 h ah

ik LIt 1
0‘5 at ! ds
. a*h .
+b *——‘ Caligr - Cshon — = K Nays
%

g _4 0o
(’iﬂs+1 -+ (6 ! ()go + 27{”‘00 )P=0 h(ﬁh —ZQOR-lvgoheh = My_4 H
[Z a 7 d
SR ______p kit 8 (110 — 'XR) N (Shph) — 600% T (82]20,):—1) - 55‘ (Rhick) +s —D:(F (aohip,h-ﬁl) = O;
hk't=0:0’ hk‘s=°°:qk|s=oo=O, (kzi, 2, .. ay N).

The right-hand sides, namely, Fy_;, Ni_;, My_; are known and are expressed in terms of v, ...
Vi-ts Doy ooy By 4. In particular, F, = M, = N, = 0 as well as q; = q; = 0.
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Moreover, one determines equations which are satisfied by the functions g (t, ). Letp = ¢(t, ¢, €) -
N‘\

kéo (s @) be an equation of I where ¢, = 0 sincep =0 is the equation of T'Y, One now sets F=—p +¢ in
(1.2) and employing the same considerations as in the derivation of (2.7), one obtains

at .
757” b (t¢) g —alt9) b= hpn -+ vprlomo 4 Eres Gihoo = 0; By = By = 0 (B =1,2,..., N). (2.8)

Applying simultaneously the first and the second iteration to the dynamic conditions (1.2), one finds
for the systems (2.4) and (2.7) the boundary conditions for s = 0:

O 2 oy (9% k1, Pny G0y p_y Iy
Zor  (af —b3) (T— Iy Syt Tty g, (2.9)

Ohor . (®ep—t _ Pan—)  p For
o % ¢ - e

or r ! dz i
/i)
\ 2 90 k2
+ Brots pr+ g =200 5=+
v [ Q. 5 du
2 Y h—2 r,R—2 7,h—2
+2bUT“’2a0b0( e >+Dk*i'

In the above Ay =B, =D, = D; =0, Ay 4, By~y, D4 are known being expressed in terms of vy, ..., vi_y,
hy, ..., hy_;. It is noted that in this case one has v; =p; = ¢ = 0.

3. Solution of Boundary-Layer Equations

It is assumed that the solution to the problem (2.2) is known, To obtain an explicit expression for

the principal terms of the asymptotic expansion for h(pi, hg, one changes the variables in (2.7) for k =1
by means of

E=sL(t, (P); T]:n(tv ®); t =i,
where L(t, ¢), n(t, ¢) are solutions of the following Cauchy problem:

gL an
7+b(i,m);7’;—~a(t,cp)ﬁ=0,Lit:0=1;

an 4
S Tt ;9‘:;]7 =0, M=o = @.

The first two equations of (2.7) now become
<9h¢1 0%h

—2 — 7 e,
5 rhgy + Chey = L o2

oh %k
61 0
T+ ohior - cihey = LP — 1,

hyli—o = Byli—e = 0;

mal

9

0’16
t0 o4 (¢, n); _55‘1' o ay (2, M),

where the notafion

; o 9 ay [ do, 99, dc ar
O CIC IERACTES

o (t, 1,]): L—l [ao(ﬁ%o ___U_GQ>+ b 0060} .
p=

dr r 05z

is used. Other functions H,(%, n, t), Hy(£, 0, t) are now introduced by means of the formulas h<p1 = fi(t, )
Hy, hgy = f4(t, n)H, where 7, and £, are the solutions of the system of equations
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0ful0t + cify + cfif =0, filpmo = 1;
af,/ot + eyfy + cefgfi_i =0, let:o =1.

(3.1)

By introducing another variable t,(dt, = deti) one obtains for the functions wy(¢, n, t} = H; + H, the best-
.conduction equation,

dw, 92y Bw
P Wilim0 = Wyfrmee = 0: S Y1 O
Oty P 1 se=e kT T 7 (3.2)

I

The solution of Eq. (3.2) can be given in a closed form, namely,

t &2

M 1) = — ’ At — )~V W[ 01 ) |, @y (u ) (3:3)
wy (€0, 1) b\hh wim"e [h(u,n) -‘ ff(u,m]d”'

The functions H;(&, n, t) and H,(¢, n, t) are introduced by means of the formulas hqai = f3(t, mH;, hyy = £4(t,
nH, where f£; and 7, are solutions of the system (3.1) in which ¢;, ¢; should be replaced by c; and c;, re-
spectively. Then the function w,(¢, 7, t) = Hy + H, satisfies (3.2) provided 7, is replaced by f; and f, by
fi, and is of the form

1, £z

Wy (E, 1, 1) = | [0 (£, — w)— Y2 T [ s (4, 1) o (e, m) (3.4)
2&n0) b“ (fa—u) e [/‘;(unn Tatay | B

To obtain an expression for h_; one has to multiply (3.3) by 7, and (3.4) by f, and add up. An expression
for hy, is obtained similarly.

4, The Case of Bounded Region, Examples

The method of asymptotic series described in Sec. 2 can also be adapted to the case of the fluid fill-
ing a bounded domain whose boundary is a free surface. Asymptotic expansions are now obtained in the
form of (2.1). The functions v, , Pi satisfy the systems (2.4). The formulas (2.5) and (2.6) are satisfied
for the local coordinates and the functions hy, gtk can be determined from (2.7)-(2.9).

Example 1, Let there be a fluid inside the ball x? + y® + z2 =1 at the initial time instant and let a
velocity field vy =05 v, = Ar /135 v, =—2Xz/ V3 be specified therein, the ball surface being a free boundary.
The corresponding flow of an ideal fluid in the absence of gravitational forces was obtained by Ovsyannikov
in [9]. With t increasing the ball is deformed and becomes an ellipsoid of revolution with semiaxes given by
7(t), T(t), T-(t); moreover, if A < 0, then for t— «, T— 0 the ellipsoid is stretched along the z-axis, and
if A > 0 the ellipsoid flattens out towards the plane z = 0, If the viscosity is taken into account, this results
in the expansions (2.1) in whichvy, p, are found from (2.2) and are given by [9]

Uro=TTIr; vg=— 2v1~12; 199=0; v=dx(t)/dt;

Po=— 0,511"(r21:—2—[-zzr4—- 1);

T
\ V25 ab- a7 ’da =it ()= const).
i

The principal terms of the asymptotic expansions can be determined from Egs. (2.7) and (2.9) for k =1,
where

Z(t, ¢)=1—2sin @; R(, @)=t cos @; a,=7—26"" cos ¢;
by=76—2 sin @; 82=n1? sin? p+1—* cos® @; b(f, ©)=0;
a(t, ¢)=711—16—%(t—* cos? p — 21%sin? );
¢; =Tt 18—2%(z? sin? ¢ — 21— cos? @);

c3=0; @,=— 3t1—%—2 sin 2¢; we=0.
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Using the formulas (3.3) and (3.4) one finds

: - i

ho1=0, hgy =36 %sin2¢ | — 1@ i g,

' o (‘Dé T Valt—uw ¢ u
hgy=0.

From (2.7) the pressure is obtained in the boundary layer, namely,

¢
g2 = 30178 "4 cos? g sin? g ? T(w) T (u) erfo (2 Vsrﬁ ) du.
b

t—u

The second approximation of the first iteration of v, = (Vyas Vg2 0) is now determined. By employing
the relations v, = 0, div v, = 0 the function ¢ is introduced. Since v, = grad & one obtains from (2.4) a sys-
tem of equations for ¢ and p,:

3D © .y 6D T3 R
T Ty =0T g, =0y VNO=0; Dy =0;

0% 1 90 a2
Vi s+ — =+ 5;
( T or? r or 6z2)’

[P2+ Galomo = 21771672 (v cos? p — 212 sin? )

(r, z,t= D} :'rzt‘z—}- 227 1).

¥

Hence by eliminating p, one obtains a boundary-value problem for &:

20 — (. . 12t¢In~v
VIO =0; Dy = (1 — 18 {1+ 18 4 (1 — 1%) cos 2¢]

(r, z, L= Dg).

The solution of the above is represented in series form,

_ 2080n7 N ' _ 1
= %%‘1 (— 1)"6(v) Q! (7—1—_:7) P, (cos 2¢) O (ch a),

where pi(x), Qi(x) are the Legendre functions of the first and second kind; respectively, Gi(7) and « being
found from the relations

i
U 41 5 (3 -+ 1) pp, () d 2 2 {—18
i .

3 p—

e T4 14-z(1—1) SR e T e o

Gh (‘C) ==

One can now determine ¢, from Eq. (2.8) for k = 1, where hp, and V,2 are boundby employing the relations

oh
Vpy = 6 2. SR =&+ 5% (Rhyy) = 0;

P s i Pools=e = 0.

Hence it follows that

Ari
o —2s—t (2% ({ Lsin®g)sin? g — (1 + cos? @) cost @ 5 3 — 18—t |
§=1.5t"% is oS o T TR V21 nadr £ 371 kE=1 o, () p, (cos 2);

0y = (1 [ 2122, () 07" (=% =)V B e

1

Example 2. The free ascent of a gas cavity in fluid is considered. It is assumed that the cavity
radius c is so small that subjected to surface tension it retains its spherical shape. We locate the origin
of the traveling coordinate system at the center of the cavity; then in this coordinate system the flow func-
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tion y, of the degenerate problem (2.2) for the flow outside the cavity which moves with velocity u(t) is
given by the expression

Py = -i— u{t) (?‘2 — i:—) sin? .

In this example, r, ¢, 8 are always spherical coordinates, The flow takes place in a meridional sec~
tion, therefore vy, = hka = 0, The equation and the boundary conditions for the velocity hW in the boundary
layer on the cavity are given by

oh, oh ok %h,
o1 ¥1 PL o3 — 1,
—Bt———Zﬁchosm—}—ﬁ%smcp—kﬁhmcomp~ 3a2 1

h(pllt:() == hq:lls:oo‘: 0',
ah‘m

_ n 3 uf®
35 s=0—2{351nq> (ﬁ—T—C-).

Applying the method used in Sec. 3 one obtains an expression for hw and from (2.7) for k = 1 the pressure
gy is found in the boundary layer:

9 T B _s*sint@
hgy = ——— j (_u, (P.)_ g MW du;
Ve .singyj Vi—u

T

¢y = — 12uc 2 sin % ¢ | B (u, ) eric (5%1_2__@;) du,

[

where

o { e : exp (45 6 ‘”) d=
v=16e O tgz%g : = 9 5 -
: {1+exp (2[5(z)d;_4§s(z)dt)zg2§]
0 ?

In the above B(u, ¢) is obtained from g(t) if the last formula in which 7 is replaced by u is employed,
In the case u = const the formulas are consistent with the result obtained by Petrov in [10].

The author would like to express his sincere thanks to L. S, Srubshchik and V. I. Yudovich for for-
mulating the problem and discussing the results.
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